Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Best Pract Res Clin Haematol ; 37(1): 101539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38490767

RESUMO

Improvements made during the last decades in the management of patients with hematologic neoplasia have resulted in increase of overall survival. These advancements have become possible through progress in our understanding of genetic basis of different hematologic malignancies and their role in the current risk-adapted treatment protocols. In this review, we provide an overview of current cytogenetic and molecular genetic methods, commonly used in the genetic characterization of hematologic malignancies, describe the current developments in the cytogenetic and molecular diagnostics, and give an outlook into their future development. Furthermore, we give a brief overview of the most important public databases and guidelines for sequence variant interpretation.


Assuntos
Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Análise Citogenética , Biologia Molecular
3.
Am J Pathol ; 194(2): 180-194, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029923

RESUMO

A minimal diffusion barrier is key to the pulmonary gas exchange. In alveolar capillary dysplasia (ACD), a rare genetically driven disease of early infancy, this crucial fibrovascular interface is compromised while the underlying pathophysiology is insufficiently understood. Recent in-depth analyses of vascular alterations in adult lung disease encouraged researchers to extend these studies to ACD and compare the changes of the microvasculature. Lung tissue samples of children with ACD (n = 12), adults with non-specific interstitial pneumonia (n = 12), and controls (n = 20) were studied using transmission electron microscopy, single-gene sequencing, immunostaining, exome sequencing, and broad transcriptome profiling. In ACD, pulmonary capillary basement membranes were hypertrophied, thickened, and multilamellated. Transcriptome profiling revealed increased CDH5, COL4A1, COL15A1, PTK2B, and FN1 and decreased VIT expression, confirmed by immunohistochemistry. In contrast, non-specific interstitial pneumonia samples showed a regular basement membrane architecture with preserved VIT expression but also increased COL15A1+ vessels. This study provides insight into the ultrastructure and pathophysiology of ACD. The lack of normally developed lung capillaries appeared to cause a replacement by COL15A1+ vessels, a mechanism recently described in interstitial lung disease. The VIT loss and FN1 overexpression might contribute to the unique appearance of basement membranes in ACD. Future studies are needed to explore the therapeutic potential of down-regulating the expression of FN1 and balancing VIT deficiency.


Assuntos
Doenças Pulmonares Intersticiais , Síndrome da Persistência do Padrão de Circulação Fetal , Recém-Nascido , Criança , Adulto , Humanos , Membrana Basal , Alvéolos Pulmonares , Pulmão , Capilares
4.
Haematologica ; 109(2): 422-430, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584291

RESUMO

Monosomy 7 is the most common cytogenetic abnormality in pediatric myelodysplastic syndrome (MDS) and associated with a high risk of disease progression. However, in young children, spontaneous loss of monosomy 7 with concomitant hematologic recovery has been described, especially in the presence of germline mutations in SAMD9 and SAMD9L genes. Here, we report on our experience of close surveillance instead of upfront hematopoietic stem cell transplantation (HSCT) in seven patients diagnosed with SAMD9L syndrome and monosomy 7 at a median age of 0.6 years (range, 0.4-2.9). Within 14 months from diagnosis, three children experienced spontaneous hematological remission accompanied by a decrease in monosomy 7 clone size. Subclones with somatic SAMD9L mutations in cis were identified in five patients, three of whom attained hematological remission. Two patients acquired RUNX1 and EZH2 mutations during the observation period, of whom one progressed to myelodysplastic syndrome with excess of blasts (MDS-EB). Four patients underwent allogeneic HSCT at a median time of 26 months (range, 14-40) from diagnosis for MDSEB, necrotizing granulomatous lymphadenitis, persistent monosomy 7, and severe neutropenia. At last follow-up, six patients were alive, while one passed away due to transplant-related causes. These data confirm previous observations that monosomy 7 can be transient in young children with SAMD9L syndrome. However, they also indicate that delaying HSCT poses a substantial risk of severe infection and disease progression. Finally, surveillance of patients with SAMD9L syndrome and monosomy 7 is critical to define the evolving genetic landscape and to determine the appropriate timing of HSCT (clinicaltrials gov. Identifier: NCT00662090).


Assuntos
Deleção Cromossômica , Síndromes Mielodisplásicas , Humanos , Criança , Pré-Escolar , Lactente , Remissão Espontânea , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Progressão da Doença , Fatores de Transcrição/genética , Monossomia , Cromossomos Humanos Par 7/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
5.
Br J Haematol ; 204(2): 576-584, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37743097

RESUMO

The prognostic impact of PICALM::MLLT10 status in childhood leukaemia is not well described. Ten International Berlin Frankfurt Münster-affiliated study groups and the Children's Oncology Group collaborated in this multicentre retrospective study. The presence of the PICALM::MLLT10 fusion gene was confirmed by fluorescence in situ hybridization and/or RNA sequencing at participating sites. Ninety-eight children met the study criteria. T-cell acute lymphoblastic leukaemia (T-ALL) and acute myeloid leukaemia (AML) predominated 55 (56%) and 39 (40%) patients, respectively. Most patients received a chemotherapy regimen per their disease phenotype: 58% received an ALL regimen, 40% an AML regimen and 1% a hybrid regimen. Outcomes for children with PICALM::MLLT10 ALL were reasonable: 5-year event-free survival (EFS) 67% and 5-year overall survival (OS) 76%, but children with PICALM::MLLT10 AML had poor outcomes: 5-year EFS 22% and 5-year OS 26%. Haematopoietic stem cell transplant (HSCT) did not result in a significant improvement in outcomes for PICALM::MLLT10 AML: 5-year EFS 20% for those who received HSCT versus 23% for those who did not (p = 0.6) and 5-year OS 37% versus 36% (p = 0.7). In summary, this study confirms that PICALM::MLLT10 AML is associated with a dismal prognosis and patients cannot be salvaged with HSCT; exploration of novel therapeutic options is warranted.


Assuntos
Leucemia Mieloide Aguda , Proteínas Monoméricas de Montagem de Clatrina , Criança , Humanos , Hibridização in Situ Fluorescente , Estudos Retrospectivos , Proteínas de Fusão Oncogênica/genética , Resultado do Tratamento , Leucemia Mieloide Aguda/genética , Fatores de Transcrição/genética , Doença Aguda , Prognóstico , Proteínas Monoméricas de Montagem de Clatrina/genética
6.
Int J Cancer ; 154(4): 607-614, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37776287

RESUMO

Genetic predisposition is one of the major risk factors for pediatric cancer, with ~10% of children being carriers of a predisposing germline alteration. It is likely that this is the tip of the iceberg and many children are underdiagnosed, as most of the analysis focuses on single or short nucleotide variants, not considering the full spectrum of DNA alterations. Hence, we applied optical genome mapping (OGM) to our cohort of 34 pediatric cancer patients to perform an unbiased germline screening and analyze the frequency of structural variants (SVs) and their impact on cancer predisposition. All children were clinically highly suspicious for germline alterations (concomitant conditions or congenital anomalies, positive family cancer history, particular cancer type, synchronous or metachronous tumors), but whole exome sequencing (WES) had failed to detect pathogenic variants in cancer predisposing genes. OGM detected a median of 49 rare SVs (range 27-149) per patient. By analysis of 18 patient-parent trios, we identified three de novo SVs. Moreover, we discovered a likely pathogenic deletion of exon 3 in the known cancer predisposition gene BRCA2, and identified a duplication in RPA1, which might represent a new cancer predisposition gene. We conclude that optical genome mapping is a suitable tool for detecting potentially predisposing SVs in addition to WES in pediatric cancer patients.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias , Criança , Humanos , Predisposição Genética para Doença , Mutação , Neoplasias/genética , Mapeamento Cromossômico
7.
Best Pract Res Clin Haematol ; 36(4): 101511, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38092485

RESUMO

The last five decades have witnessed significant improvement in diagnostics, treatment and management of children with acute lymphoblastic leukaemia (ALL). These advancements have become possible through progress in our understanding of the genetic and biological background of ALL, resulting in the introduction of risk-adapted treatment and novel therapeutic targets, e.g., tyrosine kinase inhibitors for BCR::ABL1-positive ALL. Further advances in the taxonomy of ALL and the discovery of new genetic biomarkers and therapeutic targets, as well as the introduction of targeted and immunotherapies into the frontline treatment protocols, may improve management and outcome of children with ALL. In this review we describe the current developments in the (cyto)genetic diagnostics and management of children with ALL, and provide an overview of the most important advances in the genetic classification of ALL. Furthermore, we discuss perspectives resulting from the development of new techniques, including artificial intelligence (AI).


Assuntos
Inteligência Artificial , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Imunoterapia , Genômica , Análise Citogenética
10.
Hemasphere ; 7(8): e925, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37469802

RESUMO

The mutational landscape of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), the most common pediatric cancer, is not fully described partially because commonly applied short-read next generation sequencing has a limited ability to identify structural variations. By combining comprehensive analysis of structural variants (SVs), single-nucleotide variants (SNVs), and small insertions-deletions, new subtype-defining and therapeutic targets may be detected. We analyzed the landscape of somatic alterations in 60 pediatric patients diagnosed with the most common BCP-ALL subtypes, ETV6::RUNX1+ and classical hyperdiploid (HD), using conventional cytogenetics, single nucleotide polymorphism (SNP) array, whole exome sequencing (WES), and the novel optical genome mapping (OGM) technique. Ninety-five percent of SVs detected by cytogenetics and SNP-array were verified by OGM. OGM detected an additional 677 SVs not identified using the conventional methods, including (subclonal) IKZF1 deletions. Based on OGM, ETV6::RUNX1+ BCP-ALL harbored 2.7 times more SVs than HD BCP-ALL, mainly focal deletions. Besides SVs in known leukemia development genes (ETV6, PAX5, BTG1, CDKN2A), we identified 19 novel recurrently altered regions (in n ≥ 3) including 9p21.3 (FOCAD/HACD4), 8p11.21 (IKBKB), 1p34.3 (ZMYM1), 4q24 (MANBA), 8p23.1 (MSRA), and 10p14 (SFMBT2), as well as ETV6::RUNX1+ subtype-specific SVs (12p13.1 (GPRC5A), 12q24.21 (MED13L), 18q11.2 (MIB1), 20q11.22 (NCOA6)). We detected 3 novel fusion genes (SFMBT2::DGKD, PDS5B::STAG2, and TDRD5::LPCAT2), for which the sequence and expression were validated by long-read and whole transcriptome sequencing, respectively. OGM and WES identified double hits of SVs and SNVs (ETV6, BTG1, STAG2, MANBA, TBL1XR1, NSD2) in the same patient demonstrating the power of the combined approach to define the landscape of genomic alterations in BCP-ALL.

14.
Clin Epigenetics ; 14(1): 148, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376973

RESUMO

BACKGROUND: The molecular pathogenesis of T-cell large granular lymphocytic leukemia (T-LGLL), a mature T-cell leukemia arising commonly from T-cell receptor αß-positive CD8+ memory cytotoxic T cells, is only partly understood. The role of deregulated methylation in T-LGLL is not well known. We analyzed the epigenetic profile of T-LGLL cells of 11 patients compared to their normal counterparts by array-based DNA methylation profiling. For identification of molecular events driving the pathogenesis of T-LGLL, we compared the differentially methylated loci between the T-LGLL cases and normal T cells with chromatin segmentation data of benign T cells from the BLUEPRINT project. Moreover, we analyzed gene expression data of T-LGLL and benign T cells and validated the results by pyrosequencing in an extended cohort of 17 patients, including five patients with sequential samples. RESULTS: We identified dysregulation of DNA methylation associated with altered gene expression in T-LGLL. Since T-LGLL is a rare disease, the samples size is low. But as confirmed for each sample, hypermethylation of T-LGLL cells at various CpG sites located at enhancer regions is a hallmark of this disease. The interaction of BLC11B and C14orf64 as suggested by in silico data analysis could provide a novel pathogenetic mechanism that needs further experimental investigation. CONCLUSIONS: DNA methylation is altered in T-LGLL cells compared to benign T cells. In particular, BCL11B is highly significant differentially methylated in T-LGLL cells. Although our results have to be validated in a larger patient cohort, BCL11B could be considered as a potential biomarker for this leukemia. In addition, altered gene expression and hypermethylation of enhancer regions could serve as potential mechanisms for treatment of this disease. Gene interactions of dysregulated genes, like BLC11B and C14orf64, may play an important role in pathogenic mechanisms and should be further analyzed.


Assuntos
Leucemia Linfocítica Granular Grande , Humanos , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/metabolismo , Leucemia Linfocítica Granular Grande/patologia , Epigenoma , Metilação de DNA , Fatores de Transcrição/genética , Biomarcadores/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Repressoras/genética
15.
Am J Pathol ; 192(8): 1110-1121, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35649494

RESUMO

Alveolar capillary dysplasia (ACD) is a rare lung developmental disorder leading to persistent pulmonary arterial hypertension and fatal outcomes in newborns. The current study analyzed the microvascular morphology and the underlying molecular background of ACD. One ACD group (n = 7), one pulmonary arterial hypertension group (n = 20), and one healthy con1trol group (n = 16) were generated. Samples of histologically confirmed ACD were examined by exome sequencing and array-based comparative genomic hybridization. Vascular morphology was analyzed using scanning electron microscopy of microvascular corrosion casts. Gene expression and biological pathways were analyzed using two panels on inflammation/kinase-specific genes and a comparison analysis tool. Compartment-specific protein expression was analyzed using immunostaining. In ACD, there was an altered capillary network, a high prevalence of intussusceptive angiogenesis, and increased activity of C-X-C motif chemokine receptor 4 (CXCR4), hypoxia-inducible factor 1α (HIF1A), and angiopoietin signaling pathways compared with pulmonary arterial hypertension/healthy controls. Histologically, there was a markedly increased prevalence of endothelial tyrosine kinase receptor (TEK/TIE2)+ macrophages in ACD, compared with the other groups, whereas the CXCR4 ligand CXCL12 and HIF1A showed high expression in all groups. ACD is characterized by dysfunctional capillaries and a high prevalence of intussusceptive angiogenesis. The results indicate that endothelial CXCR4, HIF1A, and angiopoietin signaling as well as TIE2+ macrophages are crucial for the induction of intussusceptive angiogenesis and vascular remodeling. Future studies should address the use of anti-angiogenic agents in ACD, where TIE2 appears as a promising target.


Assuntos
Síndrome da Persistência do Padrão de Circulação Fetal , Hipertensão Arterial Pulmonar , Angiopoietinas , Hibridização Genômica Comparativa , Humanos , Recém-Nascido , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Alvéolos Pulmonares/anormalidades
16.
Blood ; 140(1): 45-57, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35452517

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common malignant disease affecting children. Although therapeutic strategies have improved, T-cell acute lymphoblastic leukemia (T-ALL) relapse is associated with chemoresistance and a poor prognosis. One strategy to overcome this obstacle is the application of monoclonal antibodies. Here, we show that leukemic cells from patients with T-ALL express surface CD38 and CD47, both attractive targets for antibody therapy. We therefore investigated the commercially available CD38 antibody daratumumab (Dara) in combination with a proprietary modified CD47 antibody (Hu5F9-IgG2σ) in vitro and in vivo. Compared with single treatments, this combination significantly increased in vitro antibody-dependent cellular phagocytosis in T-ALL cell lines as well as in random de novo and relapsed/refractory T-ALL patient-derived xenograft (PDX) samples. Similarly, enhanced antibody-dependent cellular phagocytosis was observed when combining Dara with pharmacologic inhibition of CD47 interactions using a glutaminyl cyclase inhibitor. Phase 2-like preclinical in vivo trials using T-ALL PDX samples in experimental minimal residual disease-like (MRD-like) and overt leukemia models revealed a high antileukemic efficacy of CD47 blockade alone. However, T-ALL xenograft mice subjected to chemotherapy first (postchemotherapy MRD) and subsequently cotreated with Dara and Hu5F9-IgG2σ displayed significantly reduced bone marrow infiltration compared with single treatments. In relapsed and highly refractory T-ALL PDX combined treatment with Dara and Hu5F9-IgG2σ was required to substantially prolong survival compared with single treatments. These findings suggest that combining CD47 blockade with Dara is a promising therapy for T-ALL, especially for relapsed/refractory disease harboring a dismal prognosis in patients.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígeno CD47 , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico
17.
Genes Chromosomes Cancer ; 61(7): 432-436, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35218115

RESUMO

Deregulation of micro(mi)-RNAs is a common mechanism in tumorigenesis. We investigated the expression of 2083 miRNAs in T-cell prolymphocytic leukemia (T-PLL). Compared to physiologic CD4+ and CD8+ T-cell subsets, 111 miRNAs were differentially expressed in T-PLL. Of these, 33 belonged to miRNA gene clusters linked to cancer. Genomic variants affecting miRNAs were infrequent with the notable exception of copy number aberrations. Remarkably, we found strong upregulation of the miR-200c/-141 cluster in T-PLL to be associated with DNA hypomethylation and active promoter marks. Our findings suggest that copy number aberrations and epigenetic changes could contribute to miRNA deregulation in T-PLL.


Assuntos
Leucemia Prolinfocítica de Células T , MicroRNAs , Carcinogênese/genética , Metilação de DNA/genética , Epigênese Genética , Humanos , Leucemia Prolinfocítica de Células T/genética , MicroRNAs/genética
18.
Cancers (Basel) ; 13(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830809

RESUMO

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common cancer in children, and significant progress has been made in diagnostics and the treatment of this disease based on the subtypes of BCP-ALL. However, in a large proportion of cases (B-other), recurrent BCP-ALL-associated genomic alterations remain unidentifiable by current diagnostic procedures. In this study, we performed RNA sequencing and analyzed gene fusions, expression profiles, and mutations in diagnostic samples of 185 children with BCP-ALL. Gene expression clustering showed that a subset of B-other samples partially clusters with some of the known subgroups, particularly DUX4-positive. Mutation analysis coupled with gene expression profiling revealed the presence of distinctive BCP-ALL subgroups, characterized by the presence of mutations in known ALL driver genes, e.g., PAX5 and IKZF1. Moreover, we identified novel fusion partners of lymphoid lineage transcriptional factors ETV6, IKZF1 and PAX5. In addition, we report on low blast count detection thresholds and show that the use of EDTA tubes for sample collection does not have adverse effects on sequencing and downstream analysis. Taken together, our findings demonstrate the applicability of whole-transcriptome sequencing for personalized diagnostics in pediatric ALL, including tentative classification of the B-other cases that are difficult to diagnose using conventional methods.

20.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931501

RESUMO

Spinal muscular atrophy (SMA) is a motoneuron disease caused by deletions of the Survival of Motoneuron 1 gene (SMN1) and low SMN protein levels. SMN restoration is the concept behind a number of recently approved drugs which result in impressive yet limited effects. Since SMN has already been enhanced in treated patients, complementary SMN-independent approaches are needed. Previously, a number of altered signaling pathways which regulate motoneuron degeneration have been identified as candidate targets. However, signaling pathways form networks, and their connectivity is still unknown in SMA. Here, we used presymptomatic SMA mice to elucidate the network of altered signaling in SMA. The SMA network is structured in two clusters with AKT and 14-3-3 ζ/δ in their centers. Both clusters are connected by B-Raf as a major signaling hub. The direct interaction of B-Raf with 14-3-3 ζ/δ is important for an efficient neurotrophic activation of the MEK/ERK pathway and crucial for motoneuron survival. Further analyses in SMA mice revealed that both proteins were down-regulated in motoneurons and the spinal cord with B-Raf being reduced at presymptomatic stages. Primary fibroblasts and iPSC-derived motoneurons from SMA patients both showed the same pattern of down-regulation. This mechanism is conserved across species since a Caenorhabditis elegans SMA model showed less expression of the B-Raf homolog lin-45 Accordingly, motoneuron survival was rescued by a cell autonomous lin-45 expression in a C. elegans SMA model resulting in improved motor functions. This rescue was effective even after the onset of motoneuron degeneration and mediated by the MEK/ERK pathway.


Assuntos
Proteínas 14-3-3/genética , Proteínas de Caenorhabditis elegans/genética , Atrofia Muscular Espinal/genética , Degeneração Neural/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Quinases raf/genética , Animais , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Fibroblastos , Regulação da Expressão Gênica , Humanos , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Degeneração Neural/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais/genética , Medula Espinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...